Inhibition of β2-Microglobulin/Hemochromatosis Enhances Radiation Sensitivity by Induction of Iron Overload in Prostate Cancer Cells
نویسندگان
چکیده
BACKGROUND Bone metastasis is the most lethal form of several cancers. The β2-microglobulin (β2-M)/hemochromatosis (HFE) complex plays an important role in cancer development and bone metastasis. We demonstrated previously that overexpression of β2-M in prostate, breast, lung and renal cancer leads to increased bone metastasis in mouse models. Therefore, we hypothesized that β2-M is a rational target to treat prostate cancer bone metastasis. RESULTS In this study, we demonstrate the role of β2-M and its binding partner, HFE, in modulating radiation sensitivity and chemo-sensitivity of prostate cancer. By genetic deletion of β2-M or HFE or using an anti-β2-M antibody (Ab), we demonstrate that prostate cancer cells are sensitive to radiation in vitro and in vivo. Inhibition of β2-M or HFE sensitized prostate cancer cells to radiation by increasing iron and reactive oxygen species and decreasing DNA repair and stress response proteins. Using xenograft mouse model, we demonstrate that anti-β2-M Ab sensitizes prostate cancer cells to radiation treatment. Additionally, anti-β2-M Ab was able to prevent tumor growth in an immunocompetent spontaneous prostate cancer mouse model. Since bone metastasis is lethal, we used a bone xenograft model to test the ability of anti-β2-M Ab and radiation to block tumor growth in the bone. Combination treatment significantly prevented tumor growth in the bone xenograft model by inhibiting β2-M and inducing iron overload. In addition to radiation sensitive effects, inhibition of β2-M sensitized prostate cancer cells to chemotherapeutic agents. CONCLUSION Since prostate cancer bone metastatic patients have high β2-M in the tumor tissue and in the secreted form, targeting β2-M with anti-β2-M Ab is a promising therapeutic agent. Additionally, inhibition of β2-M sensitizes cancer cells to clinically used therapies such as radiation by inducing iron overload and decreasing DNA repair enzymes.
منابع مشابه
β2-microglobulin induces epithelial to mesenchymal transition and confers cancer lethality and bone metastasis in human cancer cells.
Bone metastasis is one of the predominant causes of cancer lethality. This study demonstrates for the first time how β2-microglobulin (β2-M) supports lethal metastasis in vivo in human prostate, breast, lung, and renal cancer cells. β2-M mediates this process by activating epithelial to mesenchymal transition (EMT) to promote lethal bone and soft tissue metastases in host mice. β2-M interacts w...
متن کاملβ2-Microglobulin-mediated Signaling as a Target for Cancer Therapy
β2-microglobulin (β2-m) has become the focus of intense scrutiny since the discovery of its undesirable roles promoting osteomimicry and cancer progression. β2-m is a well-known housekeeping protein that forms complexes with the heavy chain of major histocompatibility complex class I molecules, which are heterodimeric cell surface proteins that present antigenic peptides to cytotoxic T cells. O...
متن کاملInfluence of heparin molecular size on the induction of C-terminal unfolding in β2-microglobulin
Dialysis-related amyloidosis (DRA) is characterized by accumulation of amyloid β2-microglobulin (β2m) in the interstitial matrix. Matrix substances such as heparin have reportedly been strongly implicated in the pathogenesis of dialysis-related amyloidosis. In clinical setting of hemodialysis, two types of heparin, i.e., high and low molecular heparin (H.M.H. and L.M.H.) have been routinely use...
متن کاملMolecular and Cellular Pathobiology b2-Microglobulin Induces Epithelial to Mesenchymal Transition and Confers Cancer Lethality and Bone Metastasis in Human Cancer Cells
Bone metastasis is one of the predominant causes of cancer lethality. This study demonstrates for the first time how b2-microglobulin (b2-M) supports lethal metastasis in vivo in human prostate, breast, lung, and renal cancer cells. b2-M mediates this process by activating epithelial to mesenchymal transition (EMT) to promote lethal bone and soft tissue metastases in host mice. b2-M interacts w...
متن کاملEFFECT OF IRON OVERLOAD ON 7, 12-DIMETHYLBENZ (A) ANTHRACENE-INDUCED SKIN TUMORIGENESIS
Iron overload is known to occur in the West European and American population due to the consumption of iron-rich diets. On the other hand, genetic disorders leading to iron overload are also known. Iron overload leads to increased peroxidation and disruptive disintegration of lipid-rich membranes, and predisposes humans for an enhanced risk of cancer induction. In experimental animals iron ...
متن کامل